IT智能运维平台监控(全网it智能运维平台)

来源网友投稿 620 2023-02-09

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈IT智能运维平台监控,以及全网it智能运维平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享IT智能运维平台监控的知识,其中也会对全网it智能运维平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

智能运维管理平台是如何进行运维管理的?

IT运维从传统走向智慧,首先要经历数字化运维阶段,搭建数字运维中台既是实现运维数据有效治理的前提和基础,也是推进运维数智化转型的第一步。针对上述需求,擎创科技自主研发的擎创夏洛克AIOps智慧运营平台(如下图所示)可通过数字运维中台,对运维数据进行统一的采集存储和管理,即便面对高达100TB的日增数据量,也可进行秒级实时分析,为异常检测、根因定位等场景奠定坚实基础。


擎创夏洛克AIOps智慧运营平台架构


与传统运维方式相比,智能化运维最突出的优势是“数据大集中”,即基于数字运维中台建设,通过统一监控中心来集中管理和分析所有运维数据,并以业务视角观测运维数据的相关性,最终建立智能化场景来解决实际问题。擎创自主研发的智能运维产品——夏洛克AIOps智慧运营平台,刚好为此量身定制。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。


擎创夏洛克AIOps智慧运营平台架构


目前,夏洛克AIOps已在政府机关组织、银行业、证券保险业和交通运输业等行业场景中应用落地,极大节省了企业客户的人力成本和资金成本,提升了运维的有效性和质量。例如,通过为客户构建智能运维平台,轻松应对日增80TB的数据量,让客户平均故障修复时间(MTTR)缩短150%以上,运维总体拥有成本(TCO)下降80%以上。

智能运维平台系统是什么

智能运维平台IT智能运维平台监控,又称AIOpsIT智能运维平台监控,是将AI赋能于IT传统运维IT智能运维平台监控,通过对日志、指标、Trace等数据IT智能运维平台监控的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。

一套完整的智能运维平台系统,通常包括:

(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。

(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案

(3)告警辨析中心:智能化集中告警,构建闭环告警管理

(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析

(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测

(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景

智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次

什么是IT智能运维?

IT智能运维必须以大数据为基础,所以企业必须具有采集IT全层级数据的能力,并能实现数据融合,结合机器学习、智能算法,对IT运维实现洞察,获得预见性。
现在推IT智能运维的服务商国内有几家,我比较认可博睿数据提出的数据为本的理念,没有数据就是无水之源,所以企业别被概念忽悠,先踏实做数据采集和融合,智能运维是水到渠成的事

IT运维平台算法背后的两大“神助攻”

智能运维(AIops)是目前 IT 运维领域最火热的词汇,全称是 Algorithmic IT operations platforms,正规翻译是『基于算法的 IT 运维平台』,直观可见算法是智能运维的核心要素之一。
本文主要谈算法对运维的作用,涉及异常检测和归因分析两方面,围绕运维系统Kale 中 skyline、Oculus 模块、Opprentice 系统、Granger causality(格兰杰因果关系)、FastDTW 算法等细节展开。

一、异常检测

异常检测,是运维工程师们最先可能接触的地方了。毕竟监控告警是所有运维工作的基础。设定告警阈值是一项耗时耗力的工作,需要运维人员在充分了解业务的前提下才能进行,还得考虑业务是不是平稳发展状态,否则一两周改动一次,运维工程师绝对是要发疯的。

如果能将这部分工作交给算法来解决,无疑是推翻一座大山。这件事情,机器学习当然可以做到。但是不用机器学习,基于数学统计的算法,同样可以,而且效果也不差。

异常检测之Skyline异常检测模块

2013年,Etsy 开源了一个内部的运维系统,叫 Kale。其中的 skyline 部分,就是做异常检测的模块, 它提供了 9 种异常检测算法 :

first_hour_average、

simple_stddev_from_moving_average、

stddev_from_moving_average、

mean_subtraction_cumulation、

least_squares

histogram_bins、

grubbs、

median_absolute_deviation、

Kolmogorov-Smirnov_test

简要的概括来说,这9种算法分为两类:

从正态分布入手:假设数据服从高斯分布,可以通过标准差来确定绝大多数数据点的区间;或者根据分布的直方图,落在过少直方里的数据就是异常;或者根据箱体图分析来避免造成长尾影响。

从样本校验入手:采用 Kolmogorov-Smirnov、Shapiro-Wilk、Lilliefor 等非参数校验方法。

这些都是统计学上的算法,而不是机器学习的事情。当然,Etsy 这个 Skyline 项目并不是异常检测的全部。

首先,这里只考虑了一个指标自己的状态,从纵向的时序角度做异常检测。而没有考虑业务的复杂性导致的横向异常。其次,提供了这么多种算法,到底一个指标在哪种算法下判断的更准?这又是一个很难判断的事情。

问题一: 实现上的抉择。同样的样本校验算法,可以用来对比一个指标的当前和历史情况,也可以用来对比多个指标里哪个跟别的指标不一样。

问题二: Skyline 其实自己采用了一种特别朴实和简单的办法来做补充——9 个算法每人一票,投票达到阈值就算数。至于这个阈值,一般算 6 或者 7 这样,即占到大多数即可。

异常检测之Opprentice系统

作为对比,面对相同的问题,百度 SRE 的智能运维是怎么处理的。在去年的 APMcon 上,百度工程师描述 Opprentice 系统的主要思想时,用了这么一张图:

Opprentice 系统的主体流程为:

KPI 数据经过各式 detector 计算得到每个点的诸多 feature;

通过专门的交互工具,由运维人员标记 KPI 数据的异常时间段;

采用随机森林算法做异常分类。

其中 detector 有14种异常检测算法,如下图:

我们可以看到其中很多算法在 Etsy 的 Skyline 里同样存在。不过,为避免给这么多算法调配参数,直接采用的办法是:每个参数的取值范围均等分一下——反正随机森林不要求什么特征工程。如,用 holt-winters 做为一类 detector。holt-winters 有α,β,γ 三个参数,取值范围都是 [0, 1]。那么它就采样为 (0.2, 0.4, 0.6, 0.8),也就是 4 ** 3 = 64 个可能。那么每个点就此得到  64  个特征值。

异常检测之

Opprentice 系统与 Skyline 很相似

Opprentice 系统整个流程跟 skyline 的思想相似之处在于先通过不同的统计学上的算法来尝试发现异常,然后通过一个多数同意的方式/算法来确定最终的判定结果。

只不过这里百度采用了一个随机森林的算法,来更靠谱一点的投票。而 Etsy 呢?在 skyline 开源几个月后,他们内部又实现了新版本,叫 Thyme。利用了小波分解、傅里叶变换、Mann-whitney 检测等等技术。

另外,社区在 Skyline 上同样做了后续更新,Earthgecko 利用 Tsfresh 模块来提取时序数据的特征值,以此做多时序之间的异常检测。我们可以看到,后续发展的两种 Skyline,依然都没有使用机器学习,而是进一步深度挖掘和调整时序相关的统计学算法。

开源社区除了 Etsy,还有诸多巨头也开源过各式其他的时序异常检测算法库,大多是在 2015 年开始的。列举如下:

Yahoo! 在去年开源的 egads 库。(Java)

Twitter 在去年开源的 anomalydetection 库。(R)

Netflix 在 2015 年开源的 Surus 库。(Pig,基于PCA)

其中 Twitter 这个库还被 port 到 Python 社区,有兴趣的读者也可以试试。

二、归因分析

归因分析是运维工作的下一大块内容,就是收到报警以后的排障。对于简单故障,应对方案一般也很简单,采用 service restart engineering~ 但是在大规模 IT 环境下,通常一个故障会触发或导致大面积的告警发生。如果能从大面积的告警中,找到最紧迫最要紧的那个,肯定能大大的缩短故障恢复时间(MTTR)。

这个故障定位的需求,通常被归类为根因分析(RCA,Root Cause Analysis)。当然,RCA 可不止故障定位一个用途,性能优化的过程通常也是 RCA 的一种。

归因分析之 Oculus 模块

和异常检测一样,做 RCA 同样是可以统计学和机器学习方法并行的~我们还是从统计学的角度开始。依然是 Etsy 的 kale 系统,其中除了做异常检测的 skyline 以外,还有另外一部分,叫 Oculus。而且在 Etsy 重构 kale 2.0 的时候,Oculus 被认为是1.0 最成功的部分,完整保留下来了。

Oculus 的思路,用一句话描述,就是:如果一个监控指标的时间趋势图走势,跟另一个监控指标的趋势图长得比较像,那它们很可能是被同一个根因影响的。那么,如果整体 IT 环境内的时间同步是可靠的,且监控指标的颗粒度比较细的情况下,我们就可能近似的推断:跟一个告警比较像的最早的那个监控指标,应该就是需要重点关注的根因了。

Oculus 截图如下:

这部分使用的 计算方式有两种:

欧式距离,就是不同时序数据,在相同时刻做对比。假如0分0秒,a和b相差1000,0分5秒,也相差1000,依次类推。

FastDTW,则加了一层偏移量,0分0秒的a和0分5秒的b相差1000,0分5秒的a和0分10秒的b也相差1000,依次类推。当然,算法在这个简单假设背后,是有很多降低计算复杂度的具体实现的,这里就不谈了。

唯一可惜的是 Etsy 当初实现 Oculus 是基于 ES 的 0.20 版本,后来该版本一直没有更新。现在停留在这么老版本的 ES 用户应该很少了。除了 Oculus,还有很多其他产品,采用不同的统计学原理,达到类似的效果。

归因分析之 Granger causality

Granger causality(格兰杰因果关系)是一种算法,简单来说它通过比较“已知上一时刻所有信息,这一时刻 X 的概率分布情况”和“已知上一时刻除 Y 以外的所有信息,这一时刻 X 的概率分布情况”,来判断 Y 对 X 是否存在因果关系。

可能有了解过一点机器学习信息的读者会很诧异了:不是说机器只能反应相关性,不能反应因果性的么?需要说明一下,这里的因果,是统计学意义上的因果,不是我们通常哲学意义上的因果。

统计学上的因果定义是:『在宇宙中所有其他事件的发生情况固定不变的条件下,如果一个事件 A 的发生与不发生对于另一个事件 B 的发生的概率有影响,并且这两个事件在时间上有先后顺序(A 前 B 后),那么我们便可以说 A 是 B 的原因。』

归因分析之皮尔逊系数

另一个常用的算法是皮尔逊系数。下图是某 ITOM 软件的实现:

我们可以看到,其主要元素和采用 FastDTW 算法的 Oculus 类似:correlation 表示相关性的评分、lead/lag 表示不同时序数据在时间轴上的偏移量。

皮尔逊系数在 R 语言里可以特别简单的做到。比如我们拿到同时间段的访问量和服务器 CPU 使用率:

然后运行如下命令:

acc_count<-scale(acc$acc_count,center=T,scale=T)

cpu<-scale(acc$cpuload5,center=T,scale=T)

cor.test(acc_count,cpu)

可以看到如下结果输出:

对应的可视化图形如下:

这就说明网站数据访问量和 CPU 存在弱相关,同时从散点图上看两者为非线性关系。因此访问量上升不一定会真正影响 CPU 消耗。

其实 R 语言不太适合嵌入到现有的运维系统中。那这时候使用 Elasticsearch 的工程师就有福了。ES 在大家常用的 metric aggregation、bucket aggregation、pipeline aggregation 之外,还提供了一种 matrix aggregation,目前唯一支持的 matrix_stats 就是采用了皮尔逊系数的计算,接口文档见:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-matrix-stats-aggregation.html

唯一需要注意的就是,要求计算相关性的两个字段必须同时存在于一个 event 里。所以没法直接从现成的 ES 数据中请求不同的 date_histogram,然后计算,需要自己手动整理一遍,转储回 ES 再计算。

饶琛琳,目前就职日志易,有十年运维工作经验。在微博担任系统架构师期间,负责带领11人的SRE团队。著有《网站运维技术与实践》、《ELKstack权威指南》,合译有《Puppet 3 Cookbook》、《Learning Puppet 4》。在众多技术大会上分享过自动化运维与数据分析相关主题。

智能运维服务都有哪些功能以及效果呢?

智能运维是一种全新的数字化运维能力,且是企业数字化转型的必备能力。智能运维的本质是提升运维数据的认知能力,它在提升运维数据治理能力、优化企业业务数字化风险、降低运维人力成本和提升运维在业务侧的影响力方面都有本质的提升。

智能运维,又称AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。

比如以我们公司的夏洛克AIOps智慧运营平台为例。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,尽早布局才能在数字化时代不会被淘汰。

如何做好运维监控?

统一监控平台IT智能运维平台监控,说到底本质上也是一个监控系统IT智能运维平台监控,监控IT智能运维平台监控的基本能力是必不可少的,回归到监控的本质,先梳理下整个监控体系:

① 监控系统的本质是通过发现故障、解决故障、预防故障来为IT智能运维平台监控了保障业务的稳定。

② 监控体系一般来说包括数据采集、数据检测、告警管理、故障管理、视图管理和监控管理6大模块。而数据采集、数据检测和告警处理是监控的最小闭环,但如果想要真正把监控系统做好,那故障管理闭环、视图管理、监控管理的模块也缺一不可。

一、数据采集

1、采集方式

数据采集方式一般分为Agent模式和非Agent模式;

Agent模式包括插件采集、脚本采集、日志采集、进程采集、APM探针等

非Agent模式包括通用协议采集、Web拨测、API接口等

2、数据类型


监控的数据类型有指标、日志、跟踪数据三种类型。

指标数据是数值型的监控项,主要是通过维度来做标识。

日志数据是字符型的数据,主要是从中找一些关键字信息来做监控。

跟踪型数据反馈的是跟踪链路一个数据流转的过程,观察过程中的耗时性能是否正常。

3、采集频率

采集频率分秒级、分钟级、随机三种类型。常用的采集频率为分钟级。

4、采集传输

采集传输可按传输发起分类,也可按传输链路分类。

按传输发起分类有主动采集Pull(拉)、被动接收Push(推)

按传输链路分类有直连模式、Proxy传输。

其中Proxy传输不仅能解决监控数据跨网传输的问题,还可以缓解监控节点数量过多导致出现的数据传输的瓶颈,用Proxy实现数据分流。

5、数据存储

对于监控系统来说,主要有以下三种存储供选择

① 关系型数据库

例如MySQL、MSSQL、DB2;典型监控系统代表:Zabbix、SCOM、Tivoli;

由于数据库本身的限制,很难搞定海量监控的场景,有性能瓶颈,只在传统监控系统常用

② 时序数据库

为监控这种场景设计的数据库,擅长于指标数据存储和计算;例如InfluxDB、OpenTSDB(基于Hbase)、Prometheus等;典型监控系统代表:TICK监控框架、 Open-falcon、Prometheus

③ 全文检索数据库

这类型数据库主要用于日志型存储,对数据检索非常友好,例如Elasticsearch。

二、数据检测

1. 数据加工

① 数据清洗

数据清洗比如日志数据的清洗,因为日志数据是非结构化的数据,信息密度较低,因此需要从中提取有用的数据。

② 数据计算

很多原始性能数据不能直接用来判断数据是否产生异常。比如采集的数据是磁盘总量和磁盘使用量,如果要检测磁盘使用率,就需要对现有指标进行一个简单的四则运算,才能得到磁盘使用率。

③ 数据丰富

数据丰富就是给数据打上一些tags标签,比如打上主机、机房的标签,方便进行聚合计算。

④ 指标派生

指标派生指的是通过已有的指标,通过计算得出新的指标。

2. 检测算法

有固定规则和机器学习算法。固定算法是较为常见的算法,静态阈值、同比环比、自定义规则,而机器学习主要有动态基线、毛刺检测、指标预测、多指标关联检测等算法。

无论是固定规则还是机器学习,都会有相应的判断规则,即常见的< =和and/or的组合判断等。

三、告警管理

1. 告警丰富

告警丰富是为IT智能运维平台监控了后续告警事件分析做准备,需要辅助信息去判断该怎么处理、分析和通知。

告警丰富一般是通过规则,联动CMDB、知识库、作业历史记录等数据源,实现告警字段、关联信息的丰富;通过人工打Tags也是一种丰富方式,不过实际场景下由于人工成本高导致难以落地。

2. 告警收敛

告警收敛有三种思路:抑制、屏蔽和聚合

① 抑制

即抑制同样的问题,避免重复告警。常见的抑制方案有防抖抑制、依赖抑制、时间抑制、组合条件抑制、高可用抑制等。

② 屏蔽

屏蔽可预知的情况,比如变更维护期、固定的周期任务这些已经知道会发生的事件,心里已经有预期。

③ 聚合

聚合是把类似或相同的告警进行合并,因为可能反馈的是同一个现象。比如业务访问量升高,那承载业务的主机的CPU、内存、磁盘IO、网络IO等各项性能都会飙升,这样把这些性能指标都聚合到一块,更加便于告警的分析处理。

3. 告警通知

① 通知到人

通过一些常规的通知渠道,能够触达到人。

这样在没有人盯屏的时候,可以通过微信、短信、邮件触发到工作人员。

② 通知到系统

一般通过API推送给第三方系统,便于进行后续的事件处理

另外还需要支持自定义渠道扩展(比如企业里有自己的IM系统,可以自行接入)

四、故障管理

告警事件必须要处理有闭环,否则监控是没有意义的。

最常见还是人工处理:值班、工单、故障升级等。

经验积累可以把人工处理的故障积累到知识库里面,用于后续故障处理的参考。

自动处理,通过提取一些特定告警的固化的处理流程,实现特定场景的故障自愈;比如磁盘空间告警时把一些无用日志清掉。

智能分析主要是通过故障的关联分析、定位、预测等AI算法,进一步提升故障定位和处理的效率;

1. 视图管理

视图管理也属于增值性功能,主要是满足人的心理述求,做到心中有底,面向的角色很多(领导、管理员、值班员等)。

大屏:面向领导,提供全局概览

拓扑:面向运维人员,提供告警关联关系和影响面视图

仪表盘:面向运维人员,提供自定义的关注指标的视图

报表:面向运维人员、领导,提供一些统计汇总报表信息,例如周报、日报等

检索:面向运维人员,用于故障分析场景下的各类数据检索

2. 监控管理

监控管理是企业监控落地过程中的最大挑战。前5个模块都是监控系统对外提供的服务功能,而监控管理才是面向监控系统自身的管理和控制,关注真正落地的过程的功能呈现。主要有以下几个方面:

配置:简单、批量、自动

覆盖率:监控水平的衡量指标

指标库:监控指标的规范

移动端:随时随地处理问题

权限:使用控制

审计:管理合规

API:运维数据最大的来源,用于数据消费

自监控:自身稳定的保障

为了实现上述监控六大基础能力模块,我们可以按如下架构设计我们的统一监控平台。

主要分三层,接入层,能力层,功能层。

接入层主要考虑各种数据的接入,除了本身Agent和插件的采集接入,还需要支持第三方监控源的数据接入,才能算一个完整的统一监控平台。

能力层主要考虑监控的基础通用能力,包含数据采集模块、数据存储模块、数据加工模块、数据检测模块、AI分析模块。

功能层需要贴近用户使用场景,主要有管理、展示两类功能,在建设的过程中可以不断丰富功能场景。

另外,考虑到数据的关联关系,为未来的数据分析打下基础,监控和CMDB也需要紧密联动,所有的监控对象都应该用CMDB进行管理,另外,还可以配置驱动监控为指导理念,实现监控的自动上下线,告警通知自动识别负责人等场景,简化监控的维护管理。

为了统一监控平台能够在企业更好的落地,我们需要配备对应的管理体系,其中最重要的是指标管理体系。

指标管理体系的核心理念:

监控的指标体系是以CMDB为骨架,以监控指标为经脉,将整个统一监控平台的数据有机整合起来。

贯穿指标的生命周期管理,辅以指标的管理规范,保障监控平台长久有序的运行。

从企业业务应用的视角出发,一般将企业监控的对象分为6层,也可以根据企业自己的情况进行调整:

基础设施层

硬件设备层

操作系统层

组件服务层

应用性能层

业务运营层

关于IT智能运维平台监控和全网it智能运维平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 IT智能运维平台监控的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于全网it智能运维平台、IT智能运维平台监控的信息别忘了在本站进行查找喔。
上一篇:运维事件平台(运维被投诉)
下一篇:it运维职业发展方向(it运维工作的职业规划)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~